
《平移》教案
在教学工作者开展教学活动前,很有必要精心设计一份教案,教案是教材及大纲与课堂教学的纽带和桥梁。教案应该怎么写呢?下面是小编整理的《平移》教案,仅供参考,希望能够帮助到大家。
《平移》教案1教学目标:
1、整理和练习图形和变换,巩固平移和旋转的表象和钝角锐角的判别。
2、培养学生动手实践的能力。
3、培养学生合作交流互相帮助的合作意识。
教学重难点:
画平移的后的图形
教学过程:
一、数平移距离
1、观察43页第一题,让学生说一说怎么样数平移的距离。
2、动手涂颜色。
3、让学生说说是怎么样找到那条船的。
二、画平移后的图形
1、先让学生给43页第二题的四个点标上记号。
2、问学生,图形移动3格上边的点移动几格?图形的'大小还是保持原来的样子吗?
3、学生讨论,该怎么样画平移后的图形。
4、学生汇报方法。
5、老师总结:先找好四个点移动后的位置,再把四个点连起来就可以得到一个平移后的图形。
6、学生自己动手完成第2题的两个要求。
7、独立完成44页第5题。
三、判断练习
1、判断哪些物体的运动是平移和旋转。
2、判断哪些角是直角,锐角和钝角。
四、动手操作
1.自己动手或小组合作完成45页的做一做。
五、动手完成剪一剪。
自学剪一剪,在全班展示作品。
延伸阅读
二年级数学下册《克的认识》学案
二年级数学下册《克的认识》学案
学习目标:
1.联系具体生活情境,认识质量单位克。
2.通过“掂一掂、估一估”等活动,初步建立1克的质量观念,并学会以此为标准去估量物体的质量。
3.了解克在生活中的作用,体会到质量单位与生活的密切联系。
学习重点:认识质量单位克。
学习关键:初步建立1克的质量观念,并学会以此为标准去估量物体的质量。
学习过程:
一、自我检测:
同学们,你们和爸爸妈妈或爷爷奶奶一起买过东西吗?
出示课本主题图,超市中水果区域的情境,呈现价签上的钱数和500克等。
二、探究与交流
自学课本第101页例1,完成下面各题。(学法指导:先独立完成,然后在小组内交流讨论,比一比哪一组回答的最精彩!)
1.掂一掂1枚2分硬币,初步感受1克有多重。
2.2.用天平称1克黄豆,数一数有几颗?
3、说一说哪些物品比1克轻,哪些物品比1克重。
归纳总结:计量比较轻的物品,常用“”()作单位。
比较轻的物品常用称。
三、自我挑战:
1、说一说生活中哪些物品大约重1克。
2、一包口香糖大约重3()一个苹果大约重200()
一包瓜子大约重100()一袋盐大约重500()
3、判断对错。
(1)小明身高130克。()
(2)一个西瓜重3克。()
(3)一个足球重450克。()
4、下面的物品有多重,用哪个单位合适?圈一圈。
二数下册《克的认识》学案
300(克、千克)4(克、千克)450(克、千克)500(克、千克)
四、自我反思:
这节课我学习了______,我的收获是_______。
五、教学反思
《平移》教案2教学内容:
教科书第41~43页
教学目标:
1、通过生活情景,让学生初步感知平移和旋转现象;让学生通过观察、分类、对比,初步了解物体的平移和旋转的变换特征;初步会判断图形的平移和旋转。
2、会在方格纸上平移简单的图形。通过观察、动手操作,培养学生的观察能力和解决问题的能力。
教学重、难点:
能正确说出图形平移的距离。
教具准备:
课件、学具。
教学过程:
一、情景导入
今天我带大家到游乐园学习数学知识—平移和旋转。(看课本第37页的彩图)
[设计意图]营造一种轻松和谐的学习氛围,拉近和学生的距离。
二、新授课
1、感知平移与旋转现象
(1)看一看,说一说游乐园里有哪些游乐项目?
(2)这些游乐项目是怎样运动的?
(3)根据游乐项目不同的运动,可以分几类类?怎么分的?
(4)自己先分一分,有什么困难再在四人小组里交流一下。
2、初步了解平移和旋转的特征。
(1)说一说分类的理由
A:平移:火车沿笔直的轨道行驶、缆车沿笔直的索道滑行、火箭升空等物体都是沿着一条直线运动的,这种运动就叫做什么?
B:旋转:大风车、摩一轮等都是绕着一个点或一个轴为中心做圆周运动的,这种运动叫做什么?
(2)举生活中的实例,进一步了解平移、旋转特征。
(3)用学具在桌面做平移和旋转运动。
小结:通过观察,举生活中例子,初步感知物体平移现象和旋转现象,了解平移和旋转的特征。
[设计意图]结合学生亲身经历,建立对平移的多角度感知,建立比较丰满的表象基础,为揭示概念做好准备。
3、练习(课件出示P41页方格图)
(1)要把小房子向上平移1格,怎么移呢?(学生动手在学具上移)
(2)如果把它向上平移5格,会移吗?
(3)如果把它向右平移7格,你们会移吗?(学生动手在学具上移)
(4)教师演示,学生回答。(你是怎样看出来的)
(5)教师演示,学生回答。(你是怎样看出来的)
(6)如果把它先向右平移4格,再向下平移3格,你们会移吗?
(7)判断哪一条小船是向右平移4格后得到的?(课件出示课本P43页第一题)
(8)哪几条鱼可以通过平移与红色小鱼重合?(课件出示课本P44页第4题)
[设计意图]通过操作并说一说,比一比,这样手脑并用,学生效果就更明显。
二、综合练习
下列现象哪些是平移?哪些是旋转?(课本P43页第三题)
2、欣赏生活中的平移和旋转现象。
全课总结:今天这节课你学会哪些新知识?还有什么问题?用哪些方法学会的这些新知识。
[设计意图]鼓励多种形式的学习,在先前学习的.基础上开 ……此处隐藏13967个字……力。
4、本节寓德于教的要点,主要是通过事物变化过程的内在联系,认识变与不变的矛盾对立统一规律,对学生进行辩证唯物主义的教育。
二、教学过程
(一)提出问题
教师先在黑板上画出图形,让学生观察、思考并提问以下问题:
1、如图,点O和○O关于坐标系xoy的坐标和方程各是什么?点O和○O关于坐标系xoy的坐标和方程各是什么?两个方程,那一个较为简单?
(学生回答,教师在黑板上板书:)
直角坐标系 点O的坐标 ○O的方程
在xoy中 (3,2); (x-3)+(y-2)=5
在xoy中 (0,0) x+y=5
两个方程,显然后一个方程简单。
(二)引入新课
(继续提问)
1、从上面的例子可以看出什么?
(答) (1)对于同一点或同一曲线,由于选取的坐标系不同,点的坐标功曲线的方程也不同。
(2)把一个坐标系变换为另一个适当的坐标系,可以使曲线的方程简化,便于研究曲线的性质。
教师继续提出新的话题,即如何把一个坐标系变换为另一个适当的坐标系呢?我们再从上面的例子来观察坐标系
xoy与xoy有何异同点呢?(提问)
(答)(1)坐标轴的方向和长度单位都相同不变
(2)坐标系的原点的位置不同变
(教师归纳) 这种坐标系的变换叫做坐标轴的平移,简称移轴。
(让学生打开课本阅读移轴的定义,教师在黑板上板书)
(板书) 坐标轴的平移
(三)讲授新课
(板书)1、坐标轴平移的定义
2、坐标轴平移公式
思路:(1)以特殊到一般,在已画出的图形上任取四个点(分别在第一、二、三、四系限或坐标轴上)让学生分别写出在新、旧坐标系里的坐标,并观察、分析出它们的关系。
(答) 坐标平面上任意一点在原坐标系中坐标和在新坐标系中的坐档,归纳出来有如下关系:
(板书) 原系横坐标x=新系横坐标 x+3
原系纵坐标y=新系纵坐标y+2
现在把(3,2)推广到一般(h,k)能否得出 x=x+h
y=y+k
这个公式呢?(让学生自己动手证明)
思路(2)第一步用有向线段的数量表示x,y,h,k,x,和y,
第二步据图进行推导
第三步由推出的公式 x=x+h (1)再推出 x=x-h
y=y+k y=y-h
小结:这两个公式都叫做平移(移轴)公式。同学们还可以运用代数中学过的向量加、减法则,建立复平面来证明(留给学生课后自己作练习)
3、平移公式的应用
(1)利用平移公式求在新坐标内点的新坐标
例与练:①平移坐标轴,把原点平移到O(-4,3),求A(0,0), B(4,-5)的新坐标;C(5,-7) , D(4,-6)的旧坐标。
②平移坐标轴,把原点平移到O( )使A(2,4)的新坐标为(3,2); B(-4,0)的旧坐标为(0,3)
(2)利用平移公式化简方程
例与练:(课本例)平移坐轴,把原点移到O(2,-1),求下列曲线关于新坐标系的方程,并画出新旧坐标轴和曲线。
(x-2)
① x=2 ②y=-1 ③ (x+2) /9+(y+1)/4=1
分析:解①②时 用分别把x=2,y=-1代入公式
(2) 得x=0 y=0(比课本中的解法简单)而在解③时,却要用公式(1)分别用x=+2,y=y-1代入原方程得出新方程x/9+y/4=1 (引导学生正确作出图)
小结: 从例中可以看出,要把方程(x-2)/9+ (y+1)/4
化为简单的方程x/9+y/4 =1 ,可把 x-2=x y+1=y,得出应
把坐标原点平移到(2,-1),由此可推广,形如(x-h)/a+(y-k)/b的方程如何化简。
选择题1.坐标轴平移后,下列各数值中发生变化的是( )
(A)某两点的距离 (B)某线权中点的坐标
(C)某两条直线的.夹角 (D)某三角形的面积
答案选(C) 从此题可看出,坐标轴平移后,与坐标有关的量发生变化,但图形本身的几何性质不变。
选择题2:曲线x+y+2x-4y+1=0在新坐标系中的方程是x+y=4,则新坐标系原点在旧坐标系中的坐标是( )
(A) (-1,2) (B) (1,-2) (C)2,-1) (D) (-2,1)
分析:把x+y+2x-4y+1=0配方为(x+1)+(y-2)=4
由x+1=x===h=-1 y-2=y===k=2 故应选(A)
(四)教师小结:今天讲的主要内容是坐标轴平移的意义,平移公式及其简单应用。移轴的目的在几何上是使曲线图形的中心(或顶点)与原点重合,使图形居中,而在代数上则是将一般二元二次方程通过代数变形(变量代换),消去其中的一次项,从而使方程简化,这个问题,下一节课将作更具体深入的研究与探讨。
平移公式的两种形式何时应用较好方便,一般说来,由点的旧坐标求其新坐标时用(2)较方便,而由曲线的原方程求其新方程时用(1)较方便,但这也不是固定不变的,如例2中把方程x=2化为新方程,直接代入(2),马上就可求出x=0这个新方程。
平移坐标轴,可以简化曲线的方程,但不含改变曲线原来的性质与不变,可以看出其中的辩证关系和内在规律。
(五)布置作业 (略)
三、课后附记
1、本节课曾在福州市教育学院组织的青年教师培训班的观摩课上讲授,反映较好,从学生的作业 反馈及下节课的复习提问,利用坐标轴的平移化简二元二次方程中,引用平移公式进行运算,学生都能较熟练掌握,在半期考中,关于平移公式的应用题得分率在90%以上,说明本节课的效果较好,但因本教材在整个圆锥曲线教材内容中占的分量不重,公式较少使用,容易出现反生与遗忘,因此在平时教学中可适时加以引用。
2、本节课的设计遵照一体三重五环节的福八中数学教学的特色,重视发挥学生的主体与教师的主导作用,重视过程的教学,尽量做到:提出问题,循循诱导;疏通思路,耐心开导;解题练习,精心指导;存在不足,热情辅导;掌握过程,尽心引导;真正体现重情善导的教风与特色。
说课,作为一种教学、教研改革的手段,最早是由河南省新乡市红旗区教室于1987年提出来的。实践证明,说课活动有效地调动了教师投身教学 改革,学习教育理论,钻研课堂教学的积极性。是提高教师素质,培养造 就研究型,学者型青年教师的最好途径之一。
我市的说课活动是1994年开始的,在不断的实践探索中,我们完善了说课的理论,改进了说课的方法,取得了令人满意的成绩。现在说课已经在我 市的教学研究、职称评定、年度考核、教师比武等许多方面广泛运用。



